
SYSTEM CONVERSION GUIDELINES for NEW OPERATING SYSTEMS & SOFTWARE

COPYRIGHT 2006, 2019 by RICHARD HARRIS – http://harris1.net/

These guidelines are really about good business planning.
Speaking from decades in business consulting & management,
and computer training & support (and countless computer
system conversions), I've learned six basic rules for operating
system and applications software changes, which may help you.

1. MAKE SURE THE CURRENT HARDWARE IS UP TO THE
NEW SOFTWARE (adequate storage, memory, processor speed,
and other features). In most cases, a software 'upgrade'
actually downgrades computer performance, and requires
(really REQUIRES) a corresponding hardware upgrade --
sometimes to maintain the same level of performance,
sometimes to make the new software work at all.

2. CHANGE ONE (1) THING AT A TIME -- if at all possible.
If not possible, change as FEW things as possible.

If a complete replacement of hardware, operating system and
applications software is the ultimate objective, just
DO IT IN STAGES. This is critical for TWO reasons:

a.) If a problem crops up (and it ALWAYS does), it's a lot easier
to find out the cause -- and solution -- if only one variable has
changed. An old rule of computer troubleshooting is that the
complexity involved in tracing and resolving a problem varies
exponentially -- by the square (or one-half of the square) of the
number of variables involved. In other words, changing 3 things
(rather than 1) results in 4-and-a-half times the trouble -- or 9
times the trouble. If a whole lot of things change at once (and
I've seen this happen to several organizations, and been called
in to help them with the resulting disaster) it may never be
possible to untangle the mess without simply pulling out
everything, and starting over... by changing ONE thing at a time.

b.) Even if there are NO hardware or software problems,
changing everything all at once puts an enormous workload on
the computer users, because of the need to learn multiple new
programs (and possibly even new hardware items/functions).
Hitting a work crew with a new operating system – especially one
full of new functions and new user interfaces and presentation
styles (like Windows 10, or switching to Apple) creates a massive
learning curve that disrupts productivity and efficiency.

To compound that – with a requirement to learn a new word
processor, new presentation software, new accounting software,
new e-mail, new web-browser, new drawing software, new image
processing software, etc. – can create a vertical learning curve
that brings productivity to a standstill. During the transition, it
doesn't generally help for management to push harder on the
employees to keep productivity up to pace with normal (pre-
conversion) performance. (Sometimes good employees have a
nervous breakdown and/or quit, as a result.)

3. HAVE A BACKUP AND REVERSION PLAN, AND BE READY
TO USE IT. Never assume the change is going to work –
at least not the first time. An organization must have
accessible backups of EVERYTHING (data AND software), and be
prepared to back up and start over, in case of a major foul-up.
Things DO happen. A new desktop computer operating system
may run afoul of a certain computer/network/server/server-
operating-system combination, or snag certain printers/printer-
drivers (or other necessary hardware and drivers), or refuse to
work with certain necessary legacy software.
New applications software may run afoul of those same things –
and may also (and often does) fail to work as advertised with the
new operating system – especially if the hardware isn't the
latest, greatest, and most-standard stuff possible.

If things get out-of-hand, a properly prepared set of backups
(and management and technical support) should permit a
complete reversion to the "status quo ante" (the way things
were before) -- allowing everyone to get back to work (and
enabling productivity to resume) while the computer guys work
out the problems with the new stuff.

4. TEST BEFOREHAND. (This guideline, and the next one,
actually should be listed as guidelines #1 and #2, but no one
appreciates them until the other steps are explained and
considered.) Before changing a worker's computer, the
computer guys should get a test computer (configured like a
normal worker's computer – not a fancier or plainer system),
and set up a few simple tests of the new operating system in
the different hardware/ software / environment configurations
expected, and test to see if everything works.

Check that all app software works with all OS software on
current hardware. Ensure every application can open, save,
preview, print (with preview results matching actual output),
cut-and-paste within the application, cut-and-paste between
different applications, and interact with all normal input, output
and storage devices. Ensure fonts carry across. Amazing how
many problems can be discovered in advance, and headed off
by this technique. Much more work for computer staff, but
much less for everyone else, for lower overall business cost.

5. IMPLEMENT IN STAGES. Have the most-proficient
computer users tackle the first upgrades. Then, when they are
proficient with the new system, have others follow – while using
those early 'experts' as guides for the other workers. Plan and
budget consulting/training time for that 'software guru' to get
up-to-speed – and to train and assist others. The long-term NET
effect is usually a MAJOR net gain – and even the short-term
consequences will usually justify/recover the expense.

6. BUDGET FOR THE WHOLE COST. Upgrades of "just this
piece of software" actually almost always require budgeting for
several more actual ultimate costs:
 a.) The DESIRED software upgrade (parts AND labor).
 b.) OTHER software upgrades, made necessary by the
desired software change (both parts & labor).
 c.) Hardware upgrades, as necessary (parts & labor).
 d.) Computer technical support (often the server/network-
support people get involved, or printer vendors, etc.)
 e.) Downtime for in-house "guru" - sidetracked from
his/her regular work to master the new system.
 f.) Training for staff (including: staff time, costs of having
staff unavailable for normal work, cost of trainer time, costs of
having trainer unavailable for normal work, and costs for
downtime of hardware temporarily diverted to training).
 g.) Temporary productivity loss. Nearly ALL significant
system upgrades result (initially) in a LOSS of worker
efficiency/productivity while the bugs get worked out and
people learn all the new stuff. This is generally the least
expected (and usually, by far, the most costly) consequence of
an 'upgrade.' It's important to plan for the full duration and cost
of a realistic learning / troubleshooting / adaptation curve.
__

If these guidelines are followed, most organizations that
use them have pretty good, fairly predictable results,
and the upgrades are seldom a disaster. Organizations that
don't follow this model, commonly have very opposite results –
often not recognized until the annual financial report. ~RH

http://harris1.net/

